Spunbond Technology for Durable Nonwovens

Dr. Ingo Mählmann, Senior Manager Product Management Nonwoven

04./05. November 2015

1 Introduction

- 2 Nonwovens Market
- 3 Market Requirements for Technical Nonwovens
- 4 Production Concepts
- 5 Key Technology Facts
- 6 Your Benefits

1 Introduction

- 2 Nonwovens Market
- 3 Market Requirements for Technical Nonwovens
- 4 **Production Concepts**
- 5 Key Technology Facts
- **6** Your Benefits

Oerlikon Neumag Brief Company Introduction

- Founded in 1948
- Market and technology leader for turnkey equipment for BCF yarn and synthetic staple fiber production
- First Supplier for all major nonwoven processes: Spunbond, Meltblown and Airlaid
- Location: Neumünster, Germany
 ≈ 400 employees
- 2012 Merger with Oerlikon Barmag to form Segment Manmade Fiber
- Manmade Fiber Segment of Swiss based Oerlikon with ≈ 2,500 employees and ≈ 900 Mio € turnover

1 Introduction

2 Nonwovens Market

- 3 Market Requirements for Technical Nonwovens
- 4 **Production Concepts**
- 5 Key Technology Facts
- **6** Your Benefits

Nonwovens Market Global Nonwovens Consumption

43%

Disposable¹

- high volumes of same products,
- → low growth rates,
- highly competitive

Technical²

- higher growth rates,
- → high diversity,
- ➔ high profitability

Disposable: Hygiene, Medical, Wipes
 Technical: Industrial, Filtration

source: SmithersApex

57%

Nonwovens Market Global Nonwovens Market Development

('000 tonnes) 12000 6,5% **Technical** Nonwovens 9000 7,2% 6000 5,6% Disposable Nonwovens 3000 5,8% 0 2005 2008 2011 2014 2017 2020 source: SmithersApex (2012/2015)

Nonwovens Market Global Nonwovens Market Development

General Trend:

From Carding to Spunlaid

- Today nearly 50% of all applied nonwovens are spunlaid
- Spunlaid market growth faster than Carded

1 Introduction

2 Nonwovens Market

3 Market Requirements for Technical Nonwovens

- 4 **Production Concepts**
- 5 Key Technology Facts
- **6** Your Benefits

Market requirements for Technical Nonwovens

General Requirements for Production Companies

product qualities to meet the related requirements reflecting established local and export standards

low operational expenses

line flexibility

Sustainable solution Oerlikon Neumag Technical Spunbond Lines

- Excellent applications meet high-margin market demands
- Dedicated production lines for the biggest markets in technical nonwovens

High performance nonwoven applications

- Bitumen roofing substrate
- Underlayment roofing membrane
- Geotextile

œrlikon

neumag

© Oerlikon Neumag 2015 - Subject to technical modification and other changes

Typical Product Performance Data for Bitumen Roofing Substrates

Typical material data from the market

Basis Weight ISO 9073-1	Tensile Strength ISO 9073-3		Elongation ISO 9073-3		Thermal Dimensional Stability DIN 18192	
[g/m²]	MD [N/5 cm]	CD [N/5 cm]	MD [%]	CD [%]	elongation MD [%]	neck-in CD [%]
120	420 – 450	280 - 330	≥ 30	≥ 30	≤2	≤2
135	473 – 506	315 – 372	≥ 30	≥ 30	≤2	≤2
150	525 – 563	350 – 420	≥ 30	≥ 30	≤2	≤2
160	560 - 600	373 – 445	≥ 30	≥ 30	≤2	≤2
250	875 – 938	583 – 700	≥ 30	≥ 30	≤2	≤ 2

Typical product data achievable with Neumag plants.

- Single layer PET spunbond
- Needled, stretched, heat-set and binder impregnated
- Increased profit compared to glass-fiber reinforced substrates

Typical Product Performance Data for Roofing Underlayment Membranes

Typical material data from the market

Basis Weight ISO 9073-1	Tensile Strength ISO 9073-3		Elong ISO 9	jation 073-3	Nail Shank DIN EN 13859-1	
[g/m²]	MD [N/5 cm]	CD [N/5 cm]	MD [%]	CD [%]	MD [N]	CD [N]
40	77 – 85	59 -65	≥ 40	≥ 40	41	54
55	106 – 117	81 – 90	≥ 40	≥ 40	61	82
70	135 – 149	103 – 114	≥ 40	≥ 40	99	132
80	154 – 171	118 - 130	≥ 40	≥ 40	130	173

Typical product data achievable with Neumag plants.

- Single layer spunbond PP, PET or Bico
- Calendared

Typical Product Performance Data for Reinforcement Nonwoven Geotextiles

Typical material data from the market

Basis Weight ISO 9073-1	Tensile Strength ISO 10319		Elongation ISO 10319		Puncture Strength (CBR) ISO 12236
[g/m²]	MD [kN/m]	CD [kN/m]	MD [%]	CD [%]	[kN]
80	5,0-5,8	4,5 - 5,2	≥ 50	≥ 50	0,5-0,7
110	6,8-7,9	6,3 - 7,3	≥ 50	≥ 50	1,2 – 1,5
160	9,9 – 11,5	9,4 - 10,9	≥ 50	≥ 50	1,7 – 2,0
270	16,7 – 19,4	16,2 – 18,8	≥ 50	≥ 50	2,9-3,1
320	19,8 – 23,0	19,6 – 22,8	≥ 50	≥ 50	3,5 - 4,0

Typical product data achievable with Neumag plants.

- Single layer spunbond
- Needled, stretched, and heat-set

1 Introduction

- 2 Nonwovens Market
- 3 Market Requirements for Technical Nonwovens
- 4 Production Concepts
- 5 Key Technology Facts
- **6** Your Benefits

Classical production process

Example: 6m-Geotextile Nonwoven Plant

Single-step in-line production process

Example: 6m-Geotextile Nonwoven Plant

Classical production process versus Single-step in-line production process Example: 6m-Geotextile Nonwoven Plant

Reduced Operation Costs and Improved Yield

Example: Spunbond Bitumen Roofing Substrate Line

- Improved product performance compared to carded roofing substrates
- In-line fiber spinning and nonwoven forming process: no bale warehouse
- In-line impregnation process: less space required vs. off-line impregnation
- space requirements: 20+15 m x 80+16 m x 12 m (3360 m² hall with 12 m max height)
- Operating man-power savings: single process control system
- Pay back period of plant investment: approx. 2-3 years

Bitumen roofing substrate line concept

High Efficiency Plants for Technical Spunbond

Calculation based on 7,899 hours per year effective production time, trimmed and finished nonwoven-roll good.

1 Introduction

- 2 Regional Nonwovens Market
- 3 Market Requirements for Technical Nonwovens
- 4 **Production Concepts**
- 5 Key Technology Facts
- 6 Your Benefits

Key Technology Facts Oerlikon Neumag Spunbond Technology

Neumag Spundbond Process

Technology value propositions

Key Technology Facts Capability of Spinning Technology

Oerlikon Neumag Spunbond Technology offers customised solutions for Durable Nonwovens

Flexibility in polymer processing

- Spinning technology is generally suitable for mainly all melt-polymers
 - PET: Standard for High Performance Materials with normal chemical resistance requirements,
 - R-PET: low cost Materials, environmental friendly labeled
 - PLA: "green" Materials from biopolymers, biodegradable
 - PA6 and PA6.6: High-Performance Materials
 - PBT, PPS etc. High-Temperature Materials
 - PP and PE: Standard Material for low cost applications
- PET plants can be upgraded for R-PET
- PP plants can be upgraded for PET and vice versa

Key Technology Facts Capability of Spinning Technology

Oerlikon Neumag Spunbond Technology offers customised solutions for Durable Nonwovens

Durable Nonwovens with fiber-integrated functions

Profiled and hollow fibers with or without self-crimp capability

- Humidity transportation, breathability,
- Liquid transportation,
- Filtration efficiency,
- Sound and heat-insulation,
- High-loft, low density
- etc.

Mixed fiber technology

- One spinneret two fibers
- Combination of two different polymers in one product, e.g. PET and coPET
- Variability of fiber fineness and profiles

Selection of possible profiled and hollow fibers

© Oerlikon Neumag 2015 - Subject to technical modification and other changes

Key Technology Facts Bicomponent Technology

High variety of cross sections available for advanced characteristics

Advantages of bico fibers (examples):

- combination of characteristics in one fiber
- excellent thermobonding with low-melt polymer as sheath component
- 3-D self-crimp fiber
- micro fibers with orange-type or island-in-the-sea

Selection of possible bico fiber cross sections

Key Technology Facts Spunbond Solution Center

- Continuous development of the spunbond process
- Demonstration of process and operation based on customer demands

Capability

- Development of customer products and processes
 - S/M/S Configuration
 - All 3 spinning positions for mono and for bico technology
 - S-Line specialised for technical spunbond nonwoven
 - Bonding: Calender, 2 needle looms
- Evaluation of customers raw materials
- Testing of fibers and nonwoven in own textile laboratory

We welcome you in our lab for your product development and/or raw material evaluation.

1 Introduction

- 2 Regional Nonwovens Market
- 3 Market Requirements for Technical Nonwovens
- 4 **Production Concepts**
- 5 Key Technology Facts
- 6 Your Benefits

Your Benefits with Oerlikon Neumag Technical Spunbond Lines

In-line production from chips to roll-good

- One-step process eliminates the need of intermediate-product stores
- Full control over the whole value chain

High production capacity

- PET spinning throughput of up to 300 kg/h and meter
- PP spinning throughput of up to 240 kg/h and meter
- Production speed with in-line needlebonding of up to 40 m/min

Low production cost

- Low energy consumption
- High yield
- Few operators for running the line
- pay-back period of plant invest approx. 2 to 4 years

Thank you.

