

Evolution of Nonwovens in Clothing: Hydroentangled Impact Protection

Director, Nonwovens Research Group Centre for Technical Textiles University of Leeds, UK

Overview

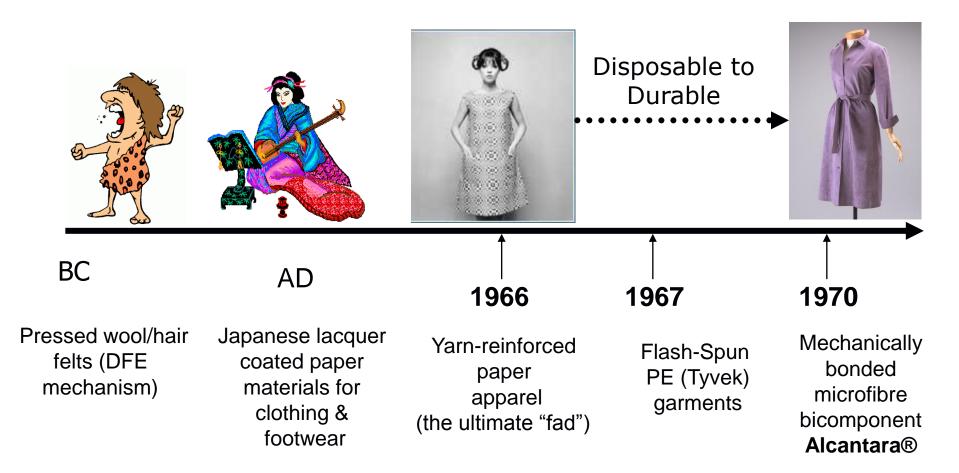
- Brief review of nonwoven fabric utilisation in garments.
- Hydroentangled clothing fabrics based on mechanical property comparisons (with woven & knitted materials).
- Structure and properties of experimental hydroentangled HMPE (polyethylene) fabrics - low and high velocity impact and puncture resistance in clothing.

UNIVERSITY OF LEEDS

Nonwovens in Clothing

- Nonwovens for shoes, leather goods, interlinings & garments >65K tonnes p.a.
- **Durables**: linings, interlinings, synthetic leather, stiffening fabrics, high-loft waddings.
- Limited penetration in outerwear clothing despite many attempts.
- **Single use**: disposable personal protective clothing (PPE), travel-clothing (including under-wear in Japan).

Elastic PU-PP spunbond, hydroentangled fabric garment set (School of Design, Leeds, 2005)



- 215 billion Euro p.a. turnover; 2.6 million workforce and 200,000 companies in the enlarged EU (95% are SME's - highly fragmented industry).
- WTO predict that by 2007 China will control up to 50% of world textile and apparel market creating a major European challenge.
- "In apparel, innovation is absolutely necessary to keep the European industry competitive" Lutz Walter (*Euratex*).
- Require added-value performance attributes provides an opportunity for nonwoven materials.

Source: Euratex, 2006

Nonwoven Outerwear: Evolution

Nonwoven outerwear : the evolution continues

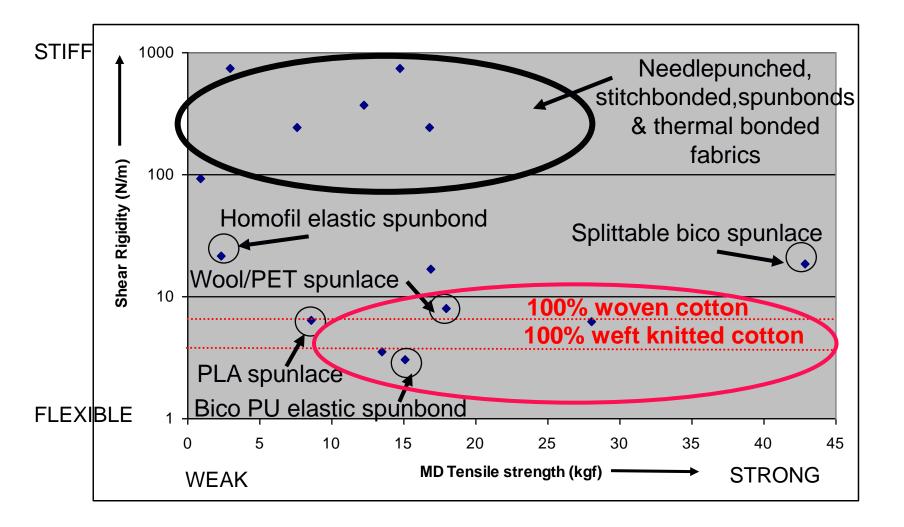
1999-2000

Spunlaid + spunlaced splittable Bico fabrics (**Evolon**®)

2002

Spunlaced | fabrics made on imaged support surfaces: (Miratec®) Drylaid & mechanically bonded Australian wool (**Canesis**)

2005-2007


Designer apparel products based on existing nonwoven fabrics

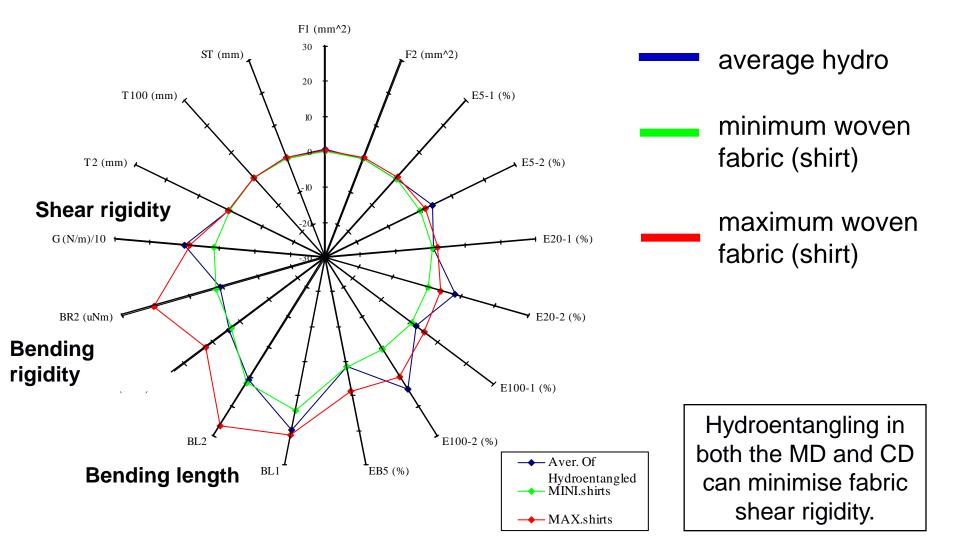
Evolution of dyeable elastic nonwovens

Development of flash-spun PE and elastomeric fabrics (Inova® & Neotis®)

Nonwoven fabric shear rigidity vs. tensile strength map (comparative)

Nonwoven fabric property map: Low stress mechanical and geometric properties (bonding method) UNIVERSITY OF LEEDS

hydroentangled


____ chemical bonded

twin step: (hydro + chemical bonded)

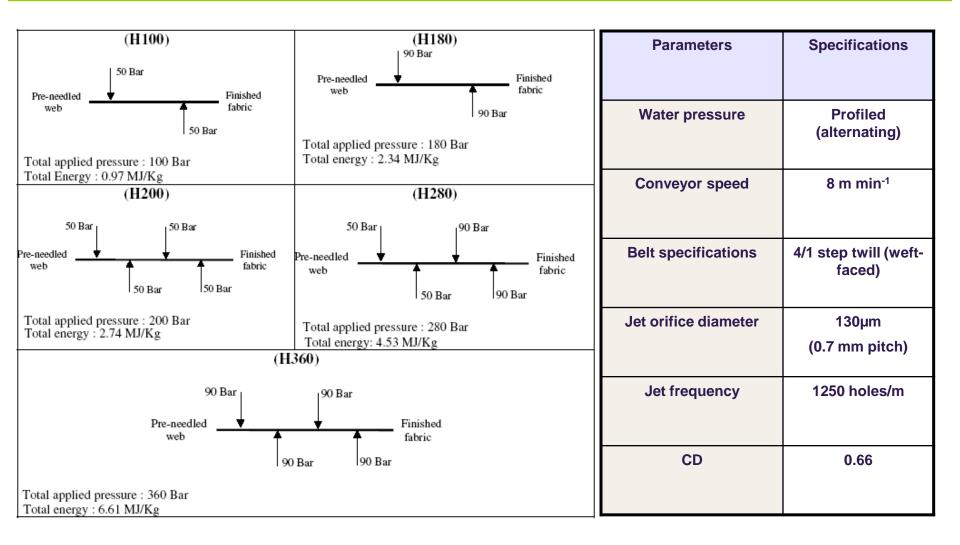
thermal point bonded

Hydroentangled fabric property map: (compared to woven shirting)

Hydroentangled protective linings (e.g. thermal & fire, penetration-impact)

Experimental: Hydroentangled Impact Protection Fabrics for Protective Clothing

- Formation and properties of hydroentangled HMPE impact-puncture resistant fabrics for light-weight armour linings (carded & crosslapped).
- Influence of water jet pressure, fabric structure and layering on impact & puncture resistance (low and high velocity).
- Installation as protective linings within protective clothing systems.


Selected polymers utilised in impact resistant fabrics

Polymer	Tensile strength (g/d)	Extension at break (%)	Young's Modulus (g/d) (MPa)	Specific gravity (g cm ⁻³)
PA	5.9-9.8	15-28	21-58 (2.1-5.8)	1.14
Para-Aramid	23-28	2.5-3.5	500-900 (63.5-114.3)	1.44
HMPE	30-40	2.5-3.6	1400-2400 (119.8-205.3)	0.97
РВО	40.3	2.5-3.5	1254-1875 (170.3-254.7)	1.54

Hydroentangled HMPE fabric formation

Pilot Hydroentanglement

Flat bed + 2 cylinder sections.

7 injectors

200 bar pressure

0.5 m wide

Hydroentangled HMPE fabric dimensions

Samples	Weight (g/m²)		Thickness (mm)		Density (g/cm ³)	
	Mean	SD	Mean	SD		
NP						
(Commercial	204	9.71	2.5	0.188	0.082	
Sample)						
H100	113	6.04	1.7	0.092	0.066	
H180	114	5.63	1.4	0.083	0.081	
H200	120	7.43	1.4	0.078	0.086	
H280	124	6.92	1.3	0.073	0.095	
H360	124	6.23	1.2	0.069	0.103	
NP	212	11.05	1.9	0.127	0.112	

H = hydroentangled NP = needlepunched

Hydroentangled HMPE fabric mechanical properties

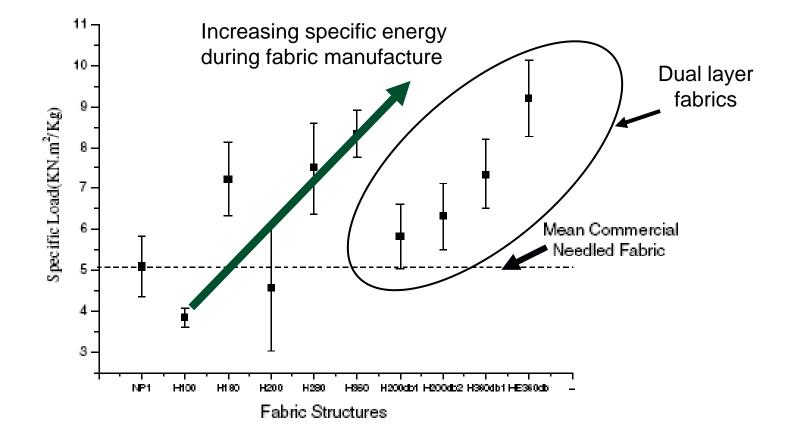
Samples	Load at break		Extension at break		Energy		Fabric tenacity	Specific energy absorption	
	(N)		(%)		(MJ)		(g/d)	(N/mm²/kg)	
	Mean	SD	Mean	SD	Mean	SD			
NP (MD)	84.4	20.6	168.9	14.0	5.43	0.80	0.19	1.09	
NP (CD)	807.4	43.2	50.8	1.4	23.93	0.90	1.89	4.79	
H360 (MD)	353.2	48.1	68.4	4.1	15.31	2.14	1.38	6.12	
H360 (CD)	586.6	38.8	87.5	2.8	17.18	2.55	2.29	6.87	
Needepunched, t = 2.5 mm Hydroentangled, t = 1.2 mm									

Hydroentangled HMPE fabric: puncture resistance (single layer)

Sample type Weight Thic		Thickness	Applied specific energy during hydroentangling	Specific puncture load		
	(g/m²)	(mm)	(MJ/kg)	(kNm²/kg)		
				Mean	SD	
Needle- punched commercial sample	204	2.5	Needled	5.1	0.73	
H100	113	1.7	0.97	3.9	0.24	
H180	114	1.4	2.34	7.2	0.91	
H200	120	1.4	2.74	4.6	1.53	
H280	124	1.3	4.53	7.5	1.11	
H360	124	1.2	6.61	8.3	0.57	

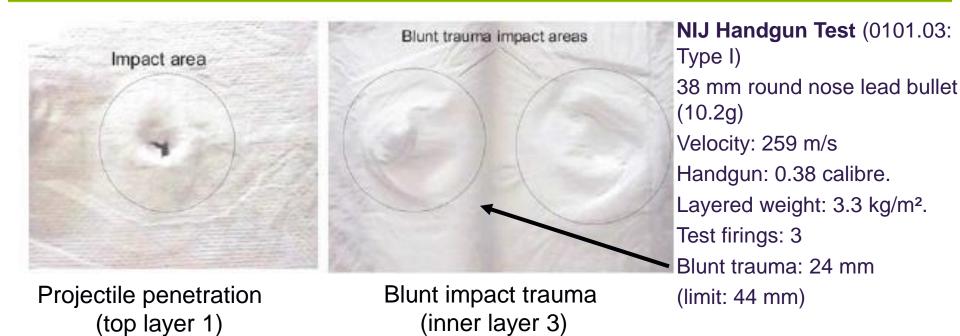
Specific puncture force for HE > NP.

Density of NP is similar to H180.


Influence of dual layer hydroentangled HMPE fabric constructions on puncture resistance UNIVERSITY OF LEEDS

Sample type	Weight	Thickness	Applied specific energy during hydroentangling	Specific puncture load	
	(g/m²)	(mm)	(MJ/kg) (kN		² /kg)
				Mean	SD
H200 MD H200 MD	241	2.7	2.742	5.8	0.78
H200 CD H200 MD	241	2.7	2.742	6.3	0.8
Carded cross-lapped Carded cross-lapped	212	1.9	3.800	7.3	0.85
H360 MD H360 MD	248	2.4	6.612	9.2	0.95

Influence of isotropicity


Influence of fabric structure on HMPE fabric puncture resistance

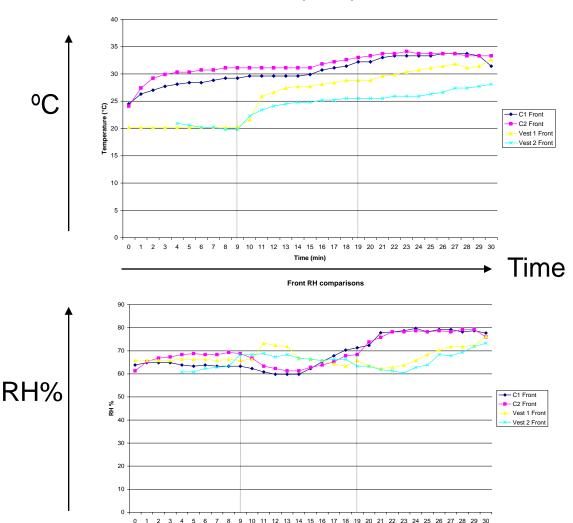
Ballistic Performance

FSP	Material	Weight	V ₅₀	Specific energy absorbed
		(kg/m²)	(ms)	(J m²/kg)
Hydroentangled HMPE (H360)		1.24	428	81
Commercial needle-punched HMPE		1.20	>490	110

NATO Stanag 2920 V_{50} , chisel point metal cylinder (1.1g, diameter = 5.6mm) 10 layers in 90° offset (MD + CD orientation).

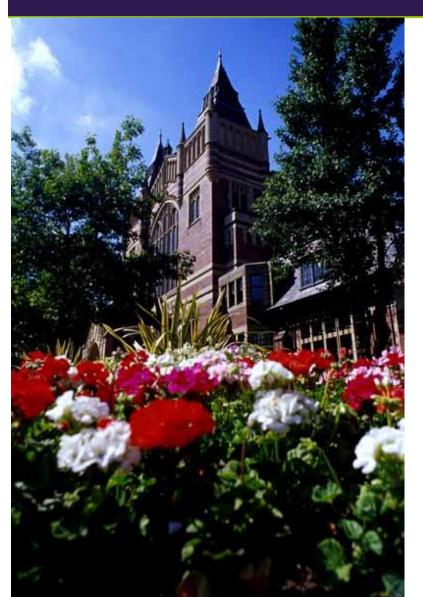
Summary

- Hydroentangled, 100% HMPE impact protective fabrics (compared to existing needle-punched):
- Improved low velocity impact resistance but not ballistic performance (in respect of specific energy absorption). Blunt impact trauma: 24mm.
- Higher specific tensile strength and specific energy absorption with up to 50% decrease in fabric thickness.
- HMPE fabric density increases with jet pressure.
- Fabric isotropicity (as determined by the direction of lay-up and MD:CD) influences the specific puncture force.
- Dual hydroentangled HMPE layers increase the specific puncture force.


Integration of multiple webs by hydroentanglement is preferable to plying fully bonded fabrics.

Concurrent research: thermo-physical wearer comfort in hydroentangled armour

Front temperature Comparisons


- Discrete mechanically integrated bi-laminar constructions with hydrophilic layer.
- Microclimate monitoring (T and RH%).
- Modelling fabric heat transfer and permeability and development of structure-property relationships.

Time (min)

Thank you

s.j.russell@leeds.ac.uk

